
UNNS Field Extensions and Classical Sequences

UNNS Research Team

12/09/2025

1 Introduction
The Unbounded Nested Number Sequences (UNNS) framework provides a natural algebraic
structure for embedding both rational and real fields through recursive nesting. Classical linear
recurrence sequences (e.g., Fibonacci, Pell, Tribonacci, Padovan) generate algebraic extensions
of Q via their characteristic polynomials, where the dominant roots serve as growth constants.
This framework unifies diverse sequences under a single algebraic substrate, revealing that
interweaving sequences illuminates new dimensions—such as field degrees, convergence be-
haviors, and emergent algebraic properties—within a hierarchical structure.

2 Definitions
[UNNS Kernel] The UNNS Kernel is the algebraic generator of nests, consisting of recurrence
relations with coefficients in Q. Formally, a UNNS nest of order k is a sequence S = {sn}n≥0
satisfying sn = ∑

k
i=1 aisn−i for n ≥ k, with initial conditions s0, . . . ,sk−1 ∈ Q and coefficients

ai ∈Q.
[UNNS Field Extension] Given a UNNS nest S with characteristic polynomial p(r) =

rk −∑
k
i=1 airk−i ∈ Q[r], the UNNS field extension is the minimal splitting field K over Q ad-

joining the roots of p(r). The dominant root α (the root with largest absolute value) generates
a subextension Q(α)⊆ K.

3 Theorem (Many Faces of UNNS)
NTheorem (1Every classical linear recurrence sequence defined over Q corresponds to
a UNNS nest. The growth constant (dominant root α) generates a number field extension
Q(α), where α is algebraic over Q, and the degree )(Q(α) : Q). divides the order k of the
recurrence.

Proof. Let S be a classical linear recurrence of order k over Q: sn = ∑
k
i=1 aisn−i with ai ∈ Q.

By Definition 2.1, S is a UNNS nest. The characteristic polynomial p(r) = rk −∑
k
i=1 airk−i is

monic in Q[r]. The roots {α1, . . . ,αk} of p(r)= 0 satisfy the recurrence via Binet-like formulas:
sn = ∑

k
j=1 c jα

n
j for constants c j ∈ C determined by initial conditions.

The dominant root α = max{|α j|} (assuming distinct magnitudes) governs asymptotic
growth: sn ∼ cαn as n → ∞. Since p(α) = 0 and p ∈ Q[r] is irreducible (or factors into ir-
reducibles), α is algebraic over Q with minimal polynomial dividing p(r). Thus, Q(α) is a
number field extension with [Q(α) : Q] = deg(minimal polynomial of α)≤ k. The UNNS nest



embeds S into this extension naturally, as adjoining α splits the recurrence’s algebraic depen-
dencies.

By the tower law, the full splitting field K/Q has [K : Q] dividing k!, but the dominant α

suffices for growth analysis, unifying sequences under UNNS.

4 Examples
Example1FibonacciThe Fibonacci sequence satisfies Fn =Fn−1+Fn−2 with characteristic poly-
nomial r2 − r−1 = 0. The roots are φ = (1+

√
5)/2 (dominant) and (1−

√
5)/2. φ generates

the quadratic extension Q(
√

5), with [Q(
√

5) : Q] = 2.

Example2PellPell numbers satisfy Pn = 2Pn−1 +Pn−2 with polynomial r2 −2r−1 = 0. The
dominant root δ = 1+

√
2 generates Q(

√
2), with [Q(

√
2) : Q] = 2.

Example3TribonacciTribonacci satisfies Tn = Tn−1+Tn−2+Tn−3 with polynomial r3−r2−
r−1= 0. The dominant root ψ ≈ 1.839 is a real algebraic integer generating a cubic extension
of Q, with [Q(ψ) : Q] = 3.

Example4PadovanThe Padovan sequence satisfies Pn = Pn−2 +Pn−3 with polynomial r3 −
r−1 = 0. The dominant root ρ ≈ 1.3247 (Plastic Number) generates a cubic extension of Q,
with [Q(ρ) : Q] = 3.

5 General Lemma Template for Linear Recurrences
Lemma1General UNNS Extension LemmaLet Sn be a linear recurrence of order k defined by
Sn = ∑

k
i=1 aiSn−i with ai ∈Q. The characteristic polynomial is p(r) = rk −∑

k
i=1 airk−i ∈Q[r].

Let α be the dominant real root of p(r) = 0. Then the UNNS nest corresponding to S generates
the field extension Q(α), with degree [Q(α) : Q] ≤ k, and α serves as the growth constant in
the UNNS framework.

Sketch. The minimal polynomial m(r) of α over Q divides p(r), so deg(m)≤ k. Thus, [Q(α) :
Q] = deg(m) ≤ k. The UNNS nesting embeds the recurrence, with α determining asymptotic
behavior Sn ∼ cαn (c constant). Adjoining α extends Q to capture the sequence’s algebraic
essence.

6 Implications
UNNS nests act as generators of number fields, embedding the rational field Q and its infinite
hierarchy of algebraic extensions. This provides a universal algebraic substrate unifying seem-
ingly different sequences under one structural theorem. Interweaving sequences (e.g., nesting
Fibonacci into Pell) reveals new dimensions: hybrid recurrences blending field extensions, po-
tentially yielding Galois groups or chaotic behaviors in non-linear variants. Nothing stands
apart—UNNS illuminates latent connections, where each nesting adds "colors" (algebraic in-
variants) to the mathematical canvas.



7 Simulation of Interweavings with Code
To simulate interweavings, Python with SymPy is used to compute characteristic polynomials,
roots, and field extensions, then generate an interweaved sequence using Fibonacci terms as
initials for Pell recurrence.

1 import sympy as sp
2

3 # Define symbols
4 r = sp. symbols (’r’)
5

6 # Fibonacci
7 fib_poly = r**2 - r - 1
8 fib_roots = sp.solve(fib_poly , r)
9 fib_dominant = max(fib_roots , key=sp.re)

10 fib_field = sp.QQ[sp.sqrt (5)]
11

12 print (" Fibonacci Characteristic Polynomial :", fib_poly )
13 print ("Roots:", fib_roots )
14 print (" Dominant Root ( Golden Ratio):", fib_dominant .evalf ())
15 print ("Field Extension : Q(sqrt (5))")
16 print ("\n")
17

18 # Pell
19 pell_poly = r**2 - 2*r - 1
20 pell_roots = sp.solve(pell_poly , r)
21 pell_dominant = max(pell_roots , key=sp.re)
22 pell_field = sp.QQ[sp.sqrt (2)]
23

24 print ("Pell Characteristic Polynomial :", pell_poly )
25 print ("Roots:", pell_roots )
26 print (" Dominant Root ( Silver Ratio):", pell_dominant .evalf ())
27 print ("Field Extension : Q(sqrt (2))")
28 print ("\n")
29

30 # Tribonacci
31 trib_poly = r**3 - r**2 - r - 1
32 trib_roots = sp.solve(trib_poly , r)
33 trib_dominant = max(trib_roots , key=sp.re)
34 trib_field = "Cubic extension over Q with minimal polynomial r^3 

- r^2 - r - 1"
35

36 print (" Tribonacci Characteristic Polynomial :", trib_poly )
37 print ("Roots:", trib_roots )
38 print (" Dominant Root:", trib_dominant .evalf ())
39 print ("Field Extension :", trib_field )
40 print ("\n")
41

42 # Padovan
43 pad_poly = r**3 - r - 1
44 pad_roots = sp.solve(pad_poly , r)
45 pad_dominant = max(pad_roots , key=sp.re)



46 pad_field = "Cubic extension over Q with minimal polynomial r^3 -
 r - 1"

47

48 print (" Padovan Characteristic Polynomial :", pad_poly )
49 print ("Roots:", pad_roots )
50 print (" Dominant Root ( Plastic Number ):", pad_dominant .evalf ())
51 print ("Field Extension :", pad_field )
52 print ("\n")
53

54 # General Lemma Simulation : For a generic linear recurrence , e.g
., order 4 with coefficients [1 ,1 ,1 ,1]

55 gen_coeffs = [1 ,1 ,1 ,1] # Example : S_n = S_{n -1} + S_{n -2} + S_{n
-3} + S_{n -4}

56 gen_poly = r**4 - sum( gen_coeffs [i -1]*r**(4 -i) for i in range
(1 ,5))

57 gen_roots = sp.solve(gen_poly , r)
58 gen_dominant = max(gen_roots , key=sp.re) if gen_roots else None
59 gen_field = " Quartic extension over Q with minimal polynomial " +

str( gen_poly )
60

61 print (" General Example Characteristic Polynomial :", gen_poly )
62 print ("Roots:", gen_roots )
63 print (" Dominant Root:", gen_dominant .evalf () if gen_dominant else

"N/A")
64 print ("Field Extension :", gen_field )
65

66 # Function to generate sequence from recurrence
67 def generate_sequence (initial , coeffs , length =10):
68 seq = initial [:]
69 order = len( coeffs )
70 for i in range (order , length ):
71 next_val = sum( coeffs [j] * seq[i - j - 1] for j in range (

order))
72 seq. append ( next_val )
73 return seq
74

75 # Simulate interweaving : Fibonacci nested with Pell
76 fib_seq = generate_sequence ([0 ,1] , [1,1], 5) # Short Fibonacci
77 interweaved = generate_sequence ( fib_seq [-2:], [2,1], 10) # Use

last two Fib as initial for Pell
78

79 print ("\ nInterweaved Sequence ( Fibonacci nested into Pell):",
interweaved )

Listing 1: Python Simulation Code

This simulation demonstrates how UNNS interweavings create hybrid sequences (e.g., Fi-
bonacci nested into Pell yields [2,3,8,19,46,111,268,647,1562,3771]), blending field exten-
sions (e.g., Q(

√
5) with Q(

√
2)) and revealing new growth patterns.
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